Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(1): 368-380, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36165215

RESUMO

BACKGROUND: Metabolic reconfiguration in plants is a hallmark response to insect herbivory that occurs in the attack site and systemically in undamaged tissues. Metabolomic systemic responses can occur rapidly while the herbivore is still present and may persist in newly developed tissue to counterattack future herbivore attacks. This study analyzed the metabolic profile of local and newly developed distal (systemic) leaves of husk tomato (Physalis philadelphica) plants after whitefly Trialeurodes vaporariorum infestation. In addition, the effect of these metabolomic adjustments on whitefly oviposition and development was evaluated. RESULTS: Our results indicate that T. vaporariorum infestation induced significant changes in husk tomato metabolic profiles, not only locally in infested leaves, but also systemically in distal leaves that developed after infestation. The distinctive metabolic profile produced in newly developed leaves affected whitefly nymphal development but did not affect female oviposition, suggesting that changes driven by whitefly herbivory persist in the young leaves that developed after the infestation event to avoid future herbivore attacks. CONCLUSIONS: This report contributes to further understanding the plant responses to sucking insects by describing the metabolic reconfiguration in newly developed, undamaged systemic leaf tissues of husk tomato plants after whitefly infestation. © 2022 Society of Chemical Industry.


Assuntos
Hemípteros , Physalis , Animais , Metabolômica , Folhas de Planta
2.
Plant Signal Behav ; 16(12): 1962050, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34435930

RESUMO

The Physalis genus includes species of commercial importance due to their ornamental, edible and medicinal properties. These qualities stem from their variety of biologically active compounds. We performed a metabolomic analysis of three Physalis species, i.e., P. angulata, P. grisea, and P. philadelphica, differing in domestication stage and cultivation practices, to determine the degree of inter-species metabolite variation and to test the hypothesis that these related species mount a common metabolomic response to foliar damage caused by Trichoplusia ni larvae. The results indicated that the metabolomic differences detected in the leaves of these species were species-specific and remained even after T. ni herbivory. They also show that each Physalis species displayed a unique response to insect herbivory. This study highlighted the metabolite variation present in Physalis spp. and the persistence of this variability when faced with biotic stressors. Furthermore, it sets an experimental precedent from which highly species-specific metabolites could be identified and subsequently used for plant breeding programs designed to increase insect resistance in Physalis and related plant species.


Assuntos
Physalis , Animais , Herbivoria , Larva , Metabolômica , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...